149 research outputs found

    Deep neural networks for quantum circuit mapping

    Get PDF
    AbstractQuantum computers have become reality thanks to the effort of some majors in developing innovative technologies that enable the usage of quantum effects in computation, so as to pave the way towards the design of efficient quantum algorithms to use in different applications domains, from finance and chemistry to artificial and computational intelligence. However, there are still some technological limitations that do not allow a correct design of quantum algorithms, compromising the achievement of the so-called quantum advantage. Specifically, a major limitation in the design of a quantum algorithm is related to its proper mapping to a specific quantum processor so that the underlying physical constraints are satisfied. This hard problem, known as circuit mapping, is a critical task to face in quantum world, and it needs to be efficiently addressed to allow quantum computers to work correctly and productively. In order to bridge above gap, this paper introduces a very first circuit mapping approach based on deep neural networks, which opens a completely new scenario in which the correct execution of quantum algorithms is supported by classical machine learning techniques. As shown in experimental section, the proposed approach speeds up current state-of-the-art mapping algorithms when used on 5-qubits IBM Q processors, maintaining suitable mapping accuracy

    A comparison of fuzzy approaches for training a humanoid robotic football player

    Get PDF
    © 2017 IEEE. Fuzzy Systems are an efficient instrument to create efficient and transparent models of the behavior of complex dynamic systems such as autonomous humanoid robots. The human interpretability of these models is particularly significant when it is applied to the cognitive robotics research, in which the models are designed to study the behaviors and produce a better understanding of the underlying processes of the cognitive development. From this research point of view, this paper presents a comparative study on training fuzzy based system to control the autonomous navigation and task execution of a humanoid robot controlled in a soccer scenario. Examples of sensor data are collected via a computer simulation, then we compare the performance of several fuzzy algorithms able to learn and optimize the humanoid robot's actions from the data

    JFML: A Java Library to Design Fuzzy Logic Systems According to the IEEE Std 1855-2016

    Get PDF
    Fuzzy logic systems are useful for solving problems in many application fields. However, these systems are usually stored in specific formats and researchers need to rewrite them to use in new problems. Recently, the IEEE Computational Intelligence Society has sponsored the publication of the IEEE Standard 1855-2016 to provide a unified and well-defined representation of fuzzy systems for problems of classification, regression, and control. The main aim of this standard is to facilitate the exchange of fuzzy systems across different programming systems in order to avoid the need to rewrite available pieces of code or to develop new software tools to replicate functionalities that are already provided by other software. In order to make the standard operative and useful for the research community, this paper presents JFML, an open source Java library that offers a complete implementation of the new IEEE standard and capability to import/export fuzzy systems in accordance with other standards and software. Moreover, the new library has associated a Website with complementary material, documentation, and examples in order to facilitate its use. In this paper, we present three case studies that illustrate the potential of JFML and the advantages of exchanging fuzzy systems among available softwareThis work was supported in part by the XXII Own Research Program (2017) of the University of Córdoba, in part by the Spanish Ministry of Economy and Competitiveness under Grants RYC-2016-19802 (Ramón y Cajal contract), TIN2017-84796-C2-1-R, TIN2014-56633-C3-3-R, TIN2014-57251-P, and TIN2015-68454-R, in part by the Andalusian Government under Grant P11-TIC-7765, in part by the Xunta de Galicia (accreditation 2016-2019), and in part by the European Union (European Regional Development Fund)

    An Internet of Things and Fuzzy Markup Language Based Approach to Prevent the Risk of Falling Object Accidents in the Execution Phase of Construction Projects

    Get PDF
    The Internet of Things (IoT) paradigm is establishing itself as a technology to improve data acquisition and information management in the construction field. It is consolidating as an emerging technology in all phases of the life cycle of projects and specifically in the execution phase of a construction project. One of the fundamental tasks in this phase is related to Health and Safety Management since the accident rate in this sector is very high compared to other phases or even sectors. For example, one of the most critical risks is falling objects due to the peculiarities of the construction process. Therefore, the integration of both technology and safety expert knowledge in this task is a key issue including ubiquitous computing, real-time decision capacity and expert knowledge management from risks with imprecise data. Starting from this vision, the goal of this paper is to introduce an IoT infrastructure integrated with JFML, an open-source library for Fuzzy Logic Systems according to the IEEE Std 1855-2016, to support imprecise experts’ decision making in facing the risk of falling objects. The system advises the worker of the risk level of accidents in real-time employing a smart wristband. The proposed IoT infrastructure has been tested in three different scenarios involving habitual working situations and characterized by different levels of falling objects risk. As assessed by an expert panel, the proposed system shows suitable results.This research was funded by University of Naples Federico II through the Finanziamento della Ricerca di Ateneo (FRA) 2020 (CUP: E69C20000380005) and has been partially supported by the ”Programa de ayuda para Estancias Breves en Centros de Investigación de Calidad” of the University of Málaga and the research project BIA2016-79270-P, the Spanish Ministry of Science, Innovation and Universities and the European Regional Development Fund-ERDF (Fondo Europeo de Desarrollo Regional-FEDER) under project PGC2018-096156-B-I00 Recuperación y Descripción de Imágenes mediante Lenguaje Natural usando Técnicas de Aprendizaje Profundo y Computación Flexible and the Andalusian Government under Grant P18-RT-2248

    Design of Fuzzy Controllers for Embedded Systems With JFML

    Get PDF
    Fuzzy rule-based systems (FRBSs) have been successfully applied to a wide range of real-world problems. However, they suffer from some design issues related to the difficulty to implement them on different hardware platforms without additional efforts. To bridge this gap, recently, the IEEE Computational Intelligence Society has sponsored the publication of the standard IEEE Std 1855-2016 which is aimed at providing the fuzzy community with a well-defined approach to model FRBSs in a hardwareindependent way. In order to provide a runnable version of an FRBS that is designed in accordance with the IEEE Std 1855-2016, the open source library Java Fuzzy Markup Language (JFML) has been developed. However, due to hardware and/or software limitations of embedded systems, it is not always possible to run an IEEE Std 1855-2016 FRBS on this kind of systems. The aim of this paper is to overcome this drawback by developing a new JFML module that assists developers in the design and implementation of FRBSs for open hardware–embedded systems. In detail, the module supports several connection types (WiFi, Bluetooth, and USB) in order to make feasible running FRBSs in a remote computer when, due to hardware limitations, it is not possible that they run locally in the embedded systems. The new JFML module is ready for ArduinoTM and Raspberry Pi, but it can be easily extended to other hardware architectures. Moreover, the new JFML module allows to automatically generate runnable files on ArduinoTM or Raspberry Pi in order to support nonexpert users, that is, users without specific knowledge about embedded systems or without strong programming skills. The use of the new JFML module is illustrated in two case studies.This paper has been supported in part by the Spanish Ministry of Economy and Competitiveness (Projects TIN2017-89517-P, TIN2015-68454-R, TIN2017-84796-C2-1-R, and TIN2017-90773-REDT) and the Andalusian Government. In addition, Jose M. Alonso is Ramon y Cajal Researcher (RYC-2016-19802). Financial support from the Galician Ministry of Education (grants ED431F 2018/02, GRC2014/030 and accreditation 2016-2019, ED431G/08), co-funded by the European Regional Development Fund (ERDF/FEDER program), is also gratefully acknowledged

    An Adaptive Neuro-Fuzzy Inference System for the Qualitative Study of Perceptual Prominence in Linguistics

    Get PDF
    Vitiello A, Acampora G, Cutugno F, Wagner P, Origlia A. An Adaptive Neuro-Fuzzy Inference System for the Qualitative Study of Perceptual Prominence in Linguistics. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2017). Piscataway, NJ: IEEE; 2017

    Disturbed Placental Imprinting in Preeclampsia Leads to Altered Expression of DLX5, a Human-Specific Early Trophoblast Marker.

    Get PDF
    Background -Preeclampsia (PE) is a complex and common human-specific pregnancy syndrome associated with placental pathology. The human-specificity provides both intellectual and methodological challenges, lacking a robust model system. Given the role of imprinted genes in human placentation and the vulnerability of imprinted genes to loss of imprinting changes, there has been extensive speculation, but no robust evidence, that imprinted genes are involved in PE. Our study aims at investigating whether disturbed imprinting contributes to PE. Methods -We first aimed at confirming that PE is a disease of the placenta by generating and analysing genome-wide molecular data on well-characterized patient material. We performed high-throughput transcriptome analyses of multiple placenta samples from normal and PE patients. Next, we identified differentially expressed genes (DEGs) in PE placenta, and intersected them with the list of human imprinted genes. We employed bioinformatics/statistical analyses to confirm association between imprinting and PE, and to predict biological processes affected in PE. Validation included epigenetic and cellular assays. Regarding human-specificity, we established an in vitro invasion-differentiation trophoblast model. Our comparative phylogenetic analysis involved single-cell transcriptome data of human, macaque and mouse preimplantation embryogenesis. Results -We found disturbed placental imprinting in PE and revealed potential candidates, including GATA3 and DLX5, with poorly explored imprinted status and no prior association with PE. Due to loss of imprinting DLX5 was upregulated in 69% of PE placentas. Levels of DLX5 correlated with classical PE marker. DLX5 is expressed in human, but not in murine trophoblast. The DLX5(high) phenotype resulted in reduced proliferation, increased metabolism and ER stress-response activation in trophoblasts in vitro The transcriptional profile of such cells mimics the transcriptome of PE placentas. Pan-mammalian comparative analysis identified DLX5 as a part of the human-specific regulatory network of trophoblast differentiation. Conclusions -Our analysis provides evidence of a true association between disturbed imprinting, gene expression and PE. Due to disturbed imprinting, the upregulated DLX5 affects trophoblast proliferation. Our in vitro model might fill a vital niche in PE research. Human-specific regulatory circuitry of DLX5 might help to explain certain aspects of PE
    corecore